

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 635-639 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208635639 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 635

Music Recommender System Based on Collaborative

Filtering

AnuPrabha P S, HarsithaN, Vaishnavi K, Dr.P.Velvadivu and

Dr.M.Sujithra

--

Date of Submission: 01-11-2020 Date of Acceptance: 15-11-2020

Abstract: Recently, the building of recommender

systems becomes a significant research area that

attractive several scientists and researchers across

the world. The recommender systems are used in a

variety of areas including music, musics, books,

news, search queries, and commercial products.

Collaborative Filtering algorithm is one of the

popular successful techniques of RS, which aims to

find users closely similar to the active one in order

to recommend items. Collaborative filtering (CF)

with alternating least squares (ALS) algorithm is

the most imperative techniques which are used for

building a music recommendation engine. The ALS

algorithm is one of the models of matrix

factorization related CF which is con- sidered as

the values in the item list of user matrix. As there is

a need to perform analysis on the ALS algorithm

by selecting different parameters which can even-

tually help in building efficient music

recommender engine. In this paper, we propose a

music recommender system based on ALS using

Apache Spark. This research focuses on the

selection of parameters of ALS algorithms that can

affect the performance of a building robust RS.

From the results, a conclusion is drawn according

to the selection of parameters of ALS algorithms

which can affect the performance of building of a

music recommender engine. The model evaluation

is done using different metrics such as execution

time, root mean squared error (RMSE) of rating

prediction, and rank in which the best model was

trained. Two best cases are chosen based on best

parameters selection from experimental results

which can lead to building good prediction rating

for a music recommender.

Keywords: Recommender systems, Collaborative

filtering, Alternating Least Squares , Apache Spark

Big data , Million song dataset

I. INTRODUCTION:
Big data analytics become an important

trend for organizations and enterprises that are

interesting in providing innovative ideas for

enhancing and increasing their business

performance and decision-making. Recommender

systems are a group of techniques that allow

filtering through large samples and information

space in order to give suggestion to users when

needed. Currently, they are becoming highly

popular and utilized in different areas such as

musics, research articles, search queries, news,

books, social tags, and music. Furthermore, there

are other essential recommender systems basically

applicable for specialist, collaborators, funny story,

restaurant and hotels, dresses, monetary services,

life insurance, passion associates which give online

dating services and several other social media such

as Twitter, LinkedIn, and Facebook.

The main focus of this work is

collaborative filtering system. It is well known that

collaborative filtering could be described as a

procedure whereby automatic prediction (i.e.,

filtering) about the interests of a user is made by

gathering taste or preferences information from

many users. The unexpressed assumption of the

collaborative filtering approach can be best

explained, viz., supposing a person A has similar

opinion with person B on a particular issue, the

assumption is that person A will be more likely to

have the same opinion as person B on a different

issue X did the opinion on X of a person chosen

randomly[1]. The main tools that we have used

here is apache spark and apache hive where we

have implemented recommender system using

apache spark and using HQL analysis of our

dataset is done.

The minimization of the error for the

users/music pairs was chosen as the basis for the

selection of the two matrices. The alternating least

squares algorithm (ALS) which achieves this by

randomly filling the user’s matrix with values

before optimizing the value of the music was used

for this purpose. The value of the user’s matrix is

optimized with the music’s matrix being kept

constant (Fig. 1). Owing to a fixed set of user

factors (i.e., values in the user’s matrix), known

ratings are employed to find the best values by

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 635-639 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208635639 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 636

optimizing the music factors, written on top of the

figure. The best user factor with the fixed music

factors is sleeted. This paper, reports for the first

time, a music recommendation system based on

collaborative filtering using apache spark. The

performance analysis and evaluation of proposed

approach are performed on a Million song dataset.

Dataset:

The dataset chosen is million song dataset.

The Million Song Dataset is a freely-available

collection of audio features and metadata for a

million contemporary popular music tracks. The

dataset does not include any audio, only the derived

features. The Million Song Dataset was created

under a grant from the National Science

Foundation. This dataset contain millions of

information of users. The dataset contains two sets

of data the song data and the user data. The song

data consist of artist name, song id, title, release

and year. The user data contains song id, user id

and the listen counts.

Data Preprocessing:

Initially the dataset is checked for null

values and the null values are replaced by filled

using imputation method. Since the dataset

contains some categorical values it is converted to

numeric values using stringindexer and pipeline

modules. The dataset is divided into training and

test data in the ratio 75:25 ratio. After the data is

preprocessed data is ready for further analysis.

Analysis:

Hive is a data warehouse infrastructure

tool to process structured data in Hadoop. It resides

on top of Hadoop to summarize Big Data, and

makes querying and analyzing easy. Here hive is

used for analyzing data which gives us the

following information: Total unique artist, Most

popular artist,Top 10 popular track, Song of the

year.

Apache spark is a data processing

framework that can quickly perform processing

tasks on very large data sets, and can also distribute

data processing tasks across multiple computers,

either on its own or in tandem with other

distributed computing tools. These two qualities are

key to the worlds of big data and machine learning.

Using spark sqlquering is done to know more about

data before proceding with the implementations of

recommendation system. Analyzing the data we

get the following information like songs which are

songs played the most and who are all the active

users

Recommendation:

Recommender systems aim to predict

users’ interests and recommend product items that

quite likely are interesting for them. They are

among the most powerful machine learning

systems that online retailers implement in order to

drive sales.

Recommendations typically speed up

searches and make it easier for users to access

content they’re interested in, and surprise them

with offers they would have never searched for.

By using music recommender system, the

music provider can predict and then offer the

appropriate songs to their users based on the

characteristics of the music that has been heard

previously.

Collaborative flitering:

Collaborative Filtering, one the other

hand, does not require any information about the

items or the user themselves. It recommends the

item based on user past experience and behavior.

The key idea behind Collaborative Filtering is that

similar users share similar interest, people with

similar interest tends to like similar items. Hence

those items are recommended to similar set of

users. For example, if a person A has same opinion

as a person B on an issue. Then A is more likely to

have B’s opinion on different issue. Thus

recommendations are made using ALS matrix

factorization method.

Item-based: measure the similarity between the

items that target users rates and interacts with other

items.

Matrix factorization methods

When a user gives feed back to a certain

music they saw (say they can rate from one to five),

this collection of feedback can be represented in a

form of a matrix. Where each row represents each

users, while each column represents different

musics. Obviously the matrix will be sparse since

not everyone is going to watch every musics, (we

all have different taste when it comes to musics).

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 635-639 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208635639 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 637

One strength of matrix factorization is the fact that

it can incorporate implicit feedback, information

that are not directly given but can be derived by

analyzing user behavior. Using this strength we can

estimate if a user is going to like a music that

(he/she) never saw. And if that estimated rating is

high, we can recommend that music to the user.

The above image does an excellent job of

summarizing, the core idea behind matrix

factorization. Let there be matrix A with

dimensionality of (m,n) this matrix can be viewed

as a dot product between two matrix with each

matrices having dimensions of (m,k) and (k,n).

Just as a side note, the above concept is

heavily related to Singular Value Decomposition

(SVD). One downside of SVD is the fact that when

the original matrix is sparse (incomplete) left and

right singular vectors are undefined.

The concept of matrix factorization can be

written mathematically to look something like

below.

Then we can create an objective function

(that we want to minimize) with respect to q and p,

which are (m,k) and (k,n) matrices.

The term on the right is the regularization

term, this is added since we do not want our

decomposed matrix q and p to over-fit to the

original matrix. Since our goal is to generalize the

previous ratings in a way that predicts future,

unknown ratings, we should not over-fit our model.

Learning Methods

One obvious method to find matrix q and

p is the gradient descent method. Since we have the

loss function defined, take the partial derivative

respect to q and p to optimize those values.

By taking partial derivatives, the update

rule would look something like above. But the error

surface is not convex, we can also take the

alternative approach in which we fix q and p

alternatively while optimizing for another.

Therefore, standard information retrieval

performance measures are frequently used to

evaluate recommenderperformance.

Alternating Least Square (ALS)
Alternating Least Square (ALS) is also a

matrix factorization algorithm and it runs itself in a

parallel fashion. ALS is implemented in Apache

Spark ML and built for a larger-scale collaborative

filtering problems. ALS is doing a pretty good job

at solving scalability and sparseness of the Ratings

data, and it’s simple and scales well to very large

datasets.Most important hyper-parameter in

Alternating Least Square (ALS):

 maxIter: the maximum number of iterations to

run (defaults to 10)

 rank: the number of latent factors in the model

(defaults to 10)

 regParam: the regularization parameter in ALS

(defaults to 1.0)

Steps to be followed to build a

recommender system:create dataframe of all

distinct songscreating another dataframe which

contains already listened songs by active

user.Joining both tables on left join. Selecting

songs which active user is yet to listen. Adding

new column of user_Id of active useer to remaining

songs df. making recommendations using ALS

recommender model and selecting only top 10

songs.

II. RESULTS AND DISCUSSION:
The fig(i) shows the most repeatedly herd

songs from which we know what are all the popular

songs based on the users listen counts. This can be

used by the streaming apps as a tool to attract users

by recommending the popular songs.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 635-639 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208635639 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 638

fig(1)

The fig(2) gives us the information

regarding who are all the active users (i.e) which

user has listened more number of songs. This will

be helpful in knowing the active user of the app

which will be useful for the streaming apps to

concentrate more on this type of users.

Fig(2)

Fig(3) displays the users who has listened

to least number of songs from which we infer that

these are inactive users.

Fig(3)

Fig(4) is the final output which is obtained

by implementing the als algorithm. This figure

recommends ten songs to the user of id 100. The

recommended songs are the one which are not

listened by that user and this recommendation is

done based on their interest. Similarly we

recommend songs for other users.

Fig(4)

Inference:

Using hive sql basic analysis is done,

where we found most popular artist, total unique

artist, song of the year, top 10 popular tracks etc .

This helps us to develop interests in users.When we

consider interest of a particular user,

recommendation is very helpful which is done

using spark. Songs are recommended for every

individual user by item based collaborative filtering

which implemented using als algorithm.

III. CONCLUSION:
By doing the analysis and

recommendation using hive and spark we conclude

that each user is recommended with a unique

playlist based on their interest. This also provides

the information for the user like wh/at are the most

popular songs, who are all the artist, which artist is

liked by the people through which he gets to know

about the current trend.Music recommender system

plays a significant role in identifying a set of music

for users based on user interest. Although many

move recommendation systems are available for

users, these systems have the limitation of not

recommending the music efficiently to the existing

users. This paper presented a music recommender

system based on collaborative filtering using

Apache Spark. From the results, the selection of

parameters of ALS algorithms can affect the

performance of building of a music recommender

engine.System evaluation is done using various

metricssuch as execution time, RMSE of rating

prediction, and rank in which the best Two best

cases are chosen based on best parameters selection

from experimental results which can lead to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 635-639 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208635639 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 639

building god prediction rating for a music

recommender engine. From these cases, the lowest

value of the RMSE is considered the best case for

prediction in building music recommendation

system. Therefore, the second case is recommended

to be used since the value of the RMSE is smaller

compared to the value in the first case as well as

adopt the second case as the best case, because

there is no significant difference in the amount of

time execution between the two cases.

REFERENCE:
[1]. (2018). Datajobs.com. Retrieved 22

November2018,from https://datajobs.com/dat

a-science-repo/Recommender-Systems-

[Netflix].pdf

[2]. Music Genome Project. (2018).

En.wikipedia.org.RetrievedNovember2

2018,from https://en.wikipedia.org/wiki/Mus

ic_Genome_Project

[3]. Simple Matrix Factorization example on the

Millionsong dataset using Pyspark. (2018).

Medium.Retrieved22November2018,from ht

tps://medium.com/@connectwithghosh/simp

le-matrix-factorization-example-on-the-

musiclens-dataset-using-pyspark-

9b7e3f567536\

[4]. Jean-julien Aucouturier and Francois Pachet.

Music Similarity Measures: What isthe Use.

In Proceedings of the ISMIR, pages 157–

163, 2002.

[5]. Luke Barrington, Reid Oda, and G.

Lanckriet. Smarter Than Genius?

HumanEvaluation of Music Recommender

Systems. In 10th International Society

forMusic Information Retrieval Conference,

number ISMIR, pages 357–362, 2009.

[6]. Kerstin Bischoff , Claudiu S Firan,

RalucaPaiu, Wolfgang Nejdl, L S De, Cyril

Laurier, and Mohamed Sordo. Music Mood

and Theme Classification - A Hybrid

Approach.

https://datajobs.com/data-science-repo/Recommender-Systems-%5bNetflix%5d.pdf
https://datajobs.com/data-science-repo/Recommender-Systems-%5bNetflix%5d.pdf
https://datajobs.com/data-science-repo/Recommender-Systems-%5bNetflix%5d.pdf
https://datajobs.com/data-science-repo/Recommender-Systems-%5bNetflix%5d.pdf
https://en.wikipedia.org/wiki/Music_Genome_Project
https://en.wikipedia.org/wiki/Music_Genome_Project
https://en.wikipedia.org/wiki/Music_Genome_Project
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536/

